Refinements of Miller's Algorithm over Weierstrass Curves Revisited

نویسندگان

  • Duc-Phong Le
  • Chao-Liang Liu
چکیده

In 1986 Victor Miller described an algorithm for computing the Weil pairing in his unpublished manuscript. This algorithm has then become the core of all pairing-based cryptosystems. Many improvements of the algorithm have been presented. Most of them involve a choice of elliptic curves of a special forms to exploit a possible twist during Tate pairing computation. Other improvements involve a reduction of the number of iterations in the Miller’s algorithm. For the generic case, Blake, Murty and Xu proposed three refinements to Miller’s algorithm over Weierstrass curves. Though their refinements which only reduce the total number of vertical lines in Miller’s algorithm, did not give an efficient computation as other optimizations, but they can be applied for computing both of Weil and Tate pairings on all pairing-friendly elliptic curves. In this paper we extend the Blake-Murty-Xu’s method and show how to perform an elimination of all vertical lines in Miller’s algorithm during Weil/Tate pairings computation on general elliptic curves. Experimental results show that our algorithm is faster about 25% in comparison with the original Miller’s algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Miller's Algorithm for Computing Pairings on Edwards Curves

Since Edwards curves were introduced to elliptic curve cryptography by Bernstein and Lange in 2007, they have received a lot of attention due to their very fast group law operation. Pairing computation on such curves is slightly slower than on Weierstrass curves. However, in some pairing-based cryptosystems, they might require a number of scalar multiplications which is time-consuming operation...

متن کامل

Faster point scalar multiplication on NIST elliptic curves over GF(p) using (twisted) Edwards curves over GF(p³)

In this paper we present a new method for fast scalar multiplication on el-liptic curves over GF (p) in FPGA using Edwards and twisted Edwards curves over GF (p 3). The presented solution works for curves with prime group order (for example for all NIST curves over GF (p)). It is possible because of using 2-isogenous twisted Edwards curves over GF (p 3) instead of using short Weierstrass curves...

متن کامل

Fast algorithms for computing isogenies between elliptic curves

We survey algorithms for computing isogenies between elliptic curves defined over a field of characteristic either 0 or a large prime. We introduce a new algorithm that computes an isogeny of degree ` (` different from the characteristic) in time quasi-linear with respect to `. This is based in particular on fast algorithms for power series expansion of the Weierstrass ℘-function and related fu...

متن کامل

Efficient and side-channel-aware implementations of elliptic curve cryptosystems over prime fields

Elliptic curve cryptosystems (ECCs) are utilised as an alternative to traditional public-key cryptosystems, and are more suitable for resource-limited environments because of smaller parameter size. In this study, the authors carry out a thorough investigation of side-channel attack aware ECC implementations over finite fields of prime characteristic including the recently introduced Edwards fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. J.

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2011